

 Navigation

 	
 index

 	
 next |

 	osprey 0.4_31_g5406ac6-py2.7.egg documentation

Osprey

Osprey is a tool for practical hyperparameter optimization of machine learning
algorithms. It’s designed to provide a practical, easy to use way for
application scientists to find parameters that maximize the cross-validation
score of a model on their dataset. Osprey is being developed by researchers at
Stanford University with primary application areas in computational protein
dynamics and drug design.

Overview

osprey is a command line tool. It runs using a simple config file which sets up the problem by describing the estimator, search space, strategy,
dataset, cross validation,
and storage for the results.

Related tools include and spearmint [https://github.com/JasperSnoek/spearmint],
hyperopt [http://hyperopt.github.io/hyperopt/], and
MOE [http://yelp.github.io/MOE/]. Both hyperopt and MOE can serve as backend
search strategies for osprey.

To get started, run osprey skeleton to create an example config file, and
then boot up one or more parallel instances of osprey worker.

	Background
	Theory

	References

	Installation
	Development Version

	Release Version

	Dependencies

	Getting Moe

	Getting Started

	Configuration File
	Estimator

	Search Space

	Strategy

	Dataset Loader

	Cross Validation

	Trials Storage

	Batch Submission
	Example PBS/TORQUE Script

	Example SGE Script

	Example SLURM Script

 Copyright 2014-2015, Stanford University.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	osprey 0.4_31_g5406ac6-py2.7.egg documentation

Background

Theory

Osprey is designed to optimize the hyperparameters of machine learning models
by maximizing a cross-validation score. As an optimization problem, the key
factors here are

	very expensive objective function evaluations (minutes to hours, or more)

	no gradient information is available

	tension between exploration of parameter space and local optimization (explore / exploit dilemma)

A good, if somewhat dated overview of this problem setting can be found in
Jones, Schonlau, Welch (1998) [1]. The key idea is that we can procede by
fitting a surrogate function or response surface. This surrogate function needs to provide both our best guess of the function as well as our
degree of belief – our uncertainty in the parts of parameter space that we
haven’t yet explored. Does the maxima lie over there? Then at each iteration,
a new point can be selected by maximizing the expected improvement over
our current best solution, by maximize the expected entropy reduction in the distribution of maxima, [3] or a similar so-called acquisition function.

osprey supports multiple search strategies for choosing
the next set of hyperparameters to evaluate your model at. The most
theoretically elegant of the supported methods, Gaussian process expected improvement using the MOE backend, attacks this problem directly by modeling
the objective function as a draw from a Gaussian process [http://en.wikipedia.org/wiki/Gaussian_process].

References

	[1]	Jones, D. R., M. Schonlau, and W. J. Welch. “Efficient global optimization of expensive black-box functions.” [http://link.springer.com/article/10.1023/A:1008306431147] J. Global Optim. 13.4 (1998): 455-492.

	[2]	Bergstra, James S., et al. “Algorithms for hyper-parameter optimization.” [http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization] NIPS. 2011.

	[3]	Hennig, P., and C. J. Schuler. “Entropy search for information-efficient global optimization.” [http://jmlr.org/papers/volume13/hennig12a/hennig12a.pdf] JMLR 98888.1 (2012): 1809-1837.

	[4]	Snoek, J., H. Larochelle, and R. P. Adams. “Practical Bayesian optimization of machine learning algorithms.” [http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms] NIPS 2012.

 Copyright 2014-2015, Stanford University.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	osprey 0.4_31_g5406ac6-py2.7.egg documentation

Installation

Osprey is written in Python, and can be installed with standard python
machinery

Development Version

grab the latest version from github
$ pip install git+git://github.com/pandegroup/osprey.git

or clone the repo yourself and run `setup.py`
$ git clone https://github.com/pandegroup/osprey.git
$ cd osprey && python setup.py install

Release Version

Currently, we recommend that you use the development version, since things are
moving fast. However, release versions from PyPI can be installed using pip.

grab the release version from PyPI
$ pip install osprey

Dependencies

	six

	pyyaml

	numpy

	scikit-learn

	sqlalchemy

	hyperopt (recommended, required for engine=hyperopt_tpe)

	MOE (recommended, required for engine=moe)

	scipy (optional, for testing)

	nose (optional, for testing)

You can grab most of them with conda.

$ conda install six pyyaml numpy scikit-learn sqlalchemy nose

Hyperopt can be installed with pip.

$ pip install hyperopt

Getting Moe

To use the MOE search strategy, osprey can call MOE via two interfaces

	MOE’s REST API, over HTTP

	MOE’s python API

Using the MOE REST API requires that you set up a MOE server somewhere.
The recommended way to do this is via the MOE docker image. See the
MOE documentation [https://github.com/Yelp/MOE#install-in-docker]
for more information.

To use the MOE python API, you must install MOE on the machines you use to run
osprey. The MOE documentation has some information on how to do this, but it
can be tricky. An easier alternative is to use the conda binary packages that
we compiled for 64-bit linux (otherwise, sorry, you’re on your own).

conda install -c https://conda.binstar.org/rmcgibbo moe

See the github repo [https://github.com/rmcgibbo/conda-moe] for more info
on the compilation of these binaries.

 Copyright 2014-2015, Stanford University.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	osprey 0.4_31_g5406ac6-py2.7.egg documentation

Getting Started

 Copyright 2014-2015, Stanford University.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	osprey 0.4_31_g5406ac6-py2.7.egg documentation

Configuration File

osprey jobs are configured via a small configuration file, which is written
in a hand-editable YAML [http://www.yaml.org/start.html] markup.

The command osprey skeleton will create an example config.yaml file
for you to get started with. The sections of the file are described below.

Estimator

The estimator section describes the model that osprey is tasked
with optimizing. It can be specified either as a python entry point,
a pickle file, or as a raw string which is passed to python’s eval().
However specified, the estimator should be an instance or subclass of
sklearn’s BaseEstimator

Examples:

estimator:
 entry_point: sklearn.linear_model.LinearRegression

estimator:
 eval: Pipeline([('vectorizer', TfidfVectorizer), ('logistic', LogisticRegression())])
 eval_scope: sklearn

estimator:
 pickle: my-model.pkl # path to pickle file on disk

Search Space

The search space describes the space of hyperparameters to search over
to find the best model. It is specified as the product space of
bounded intervals for different variables, which can either be of type
int, float, or enum. Variables of type float can also
be warped into log-space, which means that the optimization will be
performed on the log of the parameter instead of the parameter itself.

Example:

search_space:
 logistic__C:
 min: 1e-3
 max: 1e3
 type: float
 warp: log

 logistic__penalty:
 choices:
 - l1
 - l2
 type: enum

Strategy

Three probablistic search strategies are supported. First, random search
(strategy: {name: random}) can be used, which samples hyperparameters randomly
from the search space at each model-building iteration. Random search has
been shown to be [http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf] significantly more effiicent than pure grid search. Example:

strategy:
 name: random

strategy: {name: hyperopt_tpe} is an alternative strategy which uses a Tree of Parzen
estimators, described in this paper [http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization]. This algorithim requires that the external
package hyperopt [https://github.com/hyperopt/hyperopt] be installed. Example:

strategy:
 name: hyperopt_tpe

Finally, osprey supports a Gaussian process expected improvement search
strategy, using the package MOE [https://github.com/yelp/moe], with
strategy: {name: moe}. MOE can be used either as a python package installed
locally, or over a HTTP REST API. To use the REST API, specify the
url param. Example:

strategy:
 name: moe
 params:
 # url: http://path.to.moe.rest.api

Dataset Loader

Example:

dataset_loader:
 name: joblib
 params:
 filenames: ~/path/to/file.pkl

Cross Validation

Many types of cross-validation iterators are supported. The simplest
option is to simply pass an int, which sets up k-fold cross validation.
Example:

cv: 5

To access the other iterators, use the name and params keywords:

cv:
 name: shufflesplit
 params:
 n_iter: 5
 test_size: 0.5

Here’s a complete list of supported iterators, along with their name mappings:

	kfold: KFold [http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.KFold.html#sklearn.cross_validation.KFold]

	shufflesplit: ShuffleSplit [http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.ShuffleSplit.html#sklearn.cross_validation.ShuffleSplit]

	loo: LeaveOneOut [http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.LeaveOneOut.html#sklearn.cross_validation.LeaveOneOut]

	stratifiedkfold: StratifiedKFold [http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedKFold.html#sklearn.cross_validation.StratifiedKFold]

	stratifiedshufflesplit: StratifiedShuffleSplit [http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.StratifiedShuffleSplit.html#sklearn.cross_validation.StratifiedShuffleSplit]

Trials Storage

Example:

trials:
 # path to a databse in which the results of each hyperparameter fit
 # are stored any SQL database is suppoted, but we recommend using
 # SQLite, which is simple and stores the results in a file on disk.
 # the string format for connecting to other database is described here:
 # http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html#database-urls
 uri: sqlite:///osprey-trials.db

 Copyright 2014-2015, Stanford University.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	osprey 0.4_31_g5406ac6-py2.7.egg documentation

Batch Submission

Multiple osprey worker processes can be run simultaneously and connect
to the same trials database. The following scripts might be useful as templates
for submitting multiple parallel osprey worker s to a cluster batch scheduling
system. Depending on what scheduling software your cluster runs, you can use these
scripts as a jumping off point.

Example PBS/TORQUE Script

#!/bin/bash
#PBS -S /bin/bash
#PBS -l nodes=1:ppn=16
#PBS -l walltime=12:00:00
#PBS -V

cd $PBS_O_WORKDIR
NO_OF_CORES=`cat $PBS_NODEFILE | egrep -v '^#'\|'^$' | wc -l | awk '{print $1}'`
for i in `seq $NO_OF_CORES`; do
 osprey worker config.yaml -n 100 > osprey.$PBS_JOBID.$i.log 2>&1 &
done
wait

Example SGE Script

#!/bin/bash
#
#$ -cwd
#$ -j y
#$ -o /dev/null
#$ -S /bin/bash
#$ -t 1-10
#$ -l h_rt=12:00:00
#$ -V

handle if we are or are not part of an array job
if ["$SGE_TASK_ID" = "undefined"]; then
 SGE_TASK_ID=0
fi

osprey worker config.yaml -n 100 > osprey.$JOB_ID.$SGE_TASK_ID.log 2>&1

Example SLURM Script

#!/bin/bash
#SBATCH --time=12:00:00
#SBATCH --mem=4000
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=16

NO_OF_CORES=$(expr $SLURM_TASKS_PER_NODE * $SLURM_JOB_NUM_NODES)

for i in `seq $NO_OF_CORES`; do
 srun -n 1 osprey worker config.yaml -n 100 > osprey.$SLURM_JOB_ID.$i.log 2>&1 &
done
wait

 Copyright 2014-2015, Stanford University.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	osprey 0.4_31_g5406ac6-py2.7.egg documentation

Index

 Copyright 2014-2015, Stanford University.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		osprey 0.4_31_g5406ac6-py2.7.egg documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2015, Stanford University.
 Created using Sphinx 1.3.1.

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

